Modelling in-hospital length of stay: A comparison of linear and ensemble models for competing risk analysis
Juan Carlos Espinosa-Moreno,
Fernando García-García,
Naia Mas-Bilbao,
Susana García-Gutiérrez,
María José Legarreta-Olabarrieta and
Dae-Jin Lee
PLOS ONE, 2025, vol. 20, issue 8, 1-25
Abstract:
Length of Stay (LoS) for in-hospital patients is a relevant indicator of efficiency in healthcare. Moreover, it is often related to the occurrence of hospital-acquired complications. In this work, we aim to explore time-to-event analysis for modelling LoS. We employed competing risk models (CR), as we considered two mutually exclusive outcomes: favorable discharge and deterioration. The explanatory variables included the patient’s sex, age, and longitudinal vital signs collected from a dataset comprising N=19,602 admissions. To address sparse measurements, we transformed longitudinal vital signs into cross-sectional statistics. Our approach involves data pre-processing, imputation of missing data, and variable selection. We proposed four types of CR models: Cause-specific Cox, Sub-distribution hazard, and two variants of Random Survival Forests, with both generalised Log-Rank test (cause-specific hazard estimates) and Gray’s test (cumulative incidences estimations) as node splitting rules. Performance in LoS CR models was evaluated over a time frame from 2 to 15 days. Additionally, we considered baselines with two well-established clinical early warning scores the National Early Warning Score (NEWS) and the Modified Early Warning Score (MEWS). The best model was Random Survival Forest using Gray’s test split, with Integrated Brier Score[×100] of 0.386, C-Index above 99%, and Brier Score below 0.006, along the entire time frame. Employing cross-sectional statistics derived from vital signs, along with rigorous data pre-processing, outperformed the degree of correctness of modelling LoS, compared to NEWS and MEWS.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322101 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22101&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322101
DOI: 10.1371/journal.pone.0322101
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().