EconPapers    
Economics at your fingertips  
 

Research on emotion recognition using sparse EEG channels and cross-subject modeling based on CNN-KAN-F2CA model

Fan Xiong, Mengzhao Fan, Xu Yang, Chenxiao Wang and Jinli Zhou

PLOS ONE, 2025, vol. 20, issue 5, 1-21

Abstract: Emotion recognition plays a significant role in artificial intelligence and human-computer interaction. Electroencephalography (EEG) signals, due to their ability to directly reflect brain activity, have become an essential tool in emotion recognition research. However, the low dimensionality of sparse EEG channel data presents a key challenge in extracting effective features. This paper proposes a sparse channel EEG-based emotion recognition method using the CNN-KAN-F2CA network to address the challenges of limited feature extraction and cross-subject variability in emotion recognition. Through a feature mapping strategy, this method maps features such as Differential Entropy (DE), Power Spectral Density (PSD), and Emotion Valence Index (EVI) - Asymmetry Index (ASI) to pseudo-RGB images, effectively integrating both frequency-domain and spatial information from sparse channels, providing multi-dimensional input for CNN feature extraction. By combining the KAN module with a fast Fourier transform-based F2CA attention mechanism, the model can effectively fuse frequency-domain and spatial features for accurate classification of complex emotional signals. Experimental results show that the CNN-KAN-F2CA model performs comparably to multi-channel models while only using four EEG channels. Through training based on short-time segments, the model effectively reduces the impact of individual differences, significantly improving generalization ability in cross-subject emotion recognition tasks. Extensive experiments on the SEED and DEAP datasets demonstrate the proposed method’s superior performance in emotion classification tasks. In the merged dataset experiments, the accuracy of the SEED three-class task reached 97.985%, while the accuracy for the DEAP four-class task was 91.718%. In the subject-dependent experiment, the average accuracy for the SEED three-class task was 97.45%, and for the DEAP four-class task, it was 89.16%.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322583 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22583&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322583

DOI: 10.1371/journal.pone.0322583

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0322583