Enhanced separation of long-term memory from short-term memory on top of LSTM: Neural network-based stock index forecasting
Hongfei Xiao
PLOS ONE, 2025, vol. 20, issue 6, 1-34
Abstract:
LSTM (Long Short-Term Memory Network) is currently extensively utilized for forecasting financial time series, primarily due to its distinct advantages in separating the long-term from the short-term memory information within a sequence. However, the experimental results presented in this paper indicate that LSTM may struggle to clearly differentiate between these two types of information. To overcome this limitation, we propose the ARMA-RNN-LSTM Hybrid Model, aimed at enhancing the separation between the long-term and short-term memory information on top of LSTM framework. The experiment in this paper is inspired by an observation: when LSTMs and RNNs are respectively used to forecast the same time series that contains only short-term memory information, LSTMs exhibit significantly lower forecasting accuracy than RNNs, and we attributed this to LSTMs potentially misclassifying some short-term memory information as long-term during forecasting process. Further, we speculate that this confusion might also arise when LSTMs are used to forecast the time series containing both the long-term and short-term memory information. To verify the aforementioned hypothesis and improve the forecasting accuracy for financial time series, this paper combines RNNs with LSTMs, proposing a method of ARMA-RNN-LSTM Hybrid Modelling, and conducts an experiment with stock index prices. Eventually, the experiment results show that the ARMA-RNN-LSTM Hybrid Model outperforms standalone RNNs and LSTMs in forecasting stock index series containing both long-term and short-term memory information, confirming that the ARMA-RNN-LSTM Hybrid Model has effectively enhanced the separation between the long-term and short-term memory information within sequence. This hybrid modelling approach has innovatively addressed the issue of the confusion between the long-term and the short-term memory information in a sequence during LSTM’s forecasting process, improving the accuracy of forecasting financial time series, and demonstrates that neural network’s forecasting errors is a area worth to explore in the future.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322737 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22737&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322737
DOI: 10.1371/journal.pone.0322737
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().