BGM-YOLO: An accurate and efficient detector for detecting plant disease
Chenghai Yu,
Junhao Xie and
Fernandes Jean Adrian Tony
PLOS ONE, 2025, vol. 20, issue 5, 1-19
Abstract:
Given the complexity of crop growth environments in nature, where leaf backgrounds often include soil, weeds, and other plants, along with variable lighting conditions, and considering the small size of leaf spots and the wide variety of crop diseases with significant scale differences, this paper proposes a new BGM-YOLO model structure aimed at improving accuracy and inference speed. First, the GSBottleneck module is utilized to enhance the C2f module of the YOLOv8n model, leading to the introduction of the GSC2f module, which reduces computational costs and increases inference efficiency. Next, the model incorporates a multiscale bitemporal fusion module (BFM) to increase the effectiveness and robustness of feature fusion across different levels. Finally, we developed a median-enhanced spatial and channel attention block (MECS) that combines both channel and spatial attention mechanisms, effectively improving the capture and fusion of small-scale features. The experimental results demonstrate that the BGM-YOLO model achieves a 3.9% improvement in the mean average precision (mAP) over the original model. In crop disease detection tasks, the BGM-YOLO model has higher detection accuracy and a lower false negative rate, confirming its practical value in complex application scenarios.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322750 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22750&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322750
DOI: 10.1371/journal.pone.0322750
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().