EconPapers    
Economics at your fingertips  
 

FedNolowe: A normalized loss-based weighted aggregation strategy for robust federated learning in heterogeneous environments

Duy-Dong Le, Tuong-Nguyen Huynh, Anh-Khoa Tran, Minh-Son Dao and Pham The Bao

PLOS ONE, 2025, vol. 20, issue 8, 1-25

Abstract: Federated Learning supports collaborative model training across distributed clients while keeping sensitive data decentralized. Still, non-independent and identically distributed data pose challenges like unstable convergence and client drift. We propose Federated Normalized Loss-based Weighted Aggregation (FedNolowe) (Code is available at https://github.com/dongld-2020/fednolowe), a new method that weights client contributions using normalized training losses, favoring those with lower losses to improve global model stability. Unlike prior methods tied to dataset sizes or resource-heavy techniques, FedNolowe employs a two-stage L1 normalization, reducing computational complexity by 40% in floating-point operations while matching state-of-the-art performance. A detailed sensitivity analysis shows our two-stage weighting maintains stability in heterogeneous settings by mitigating extreme loss impacts while remaining effective in independent and identically distributed scenarios.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322766 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22766&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322766

DOI: 10.1371/journal.pone.0322766

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-08-16
Handle: RePEc:plo:pone00:0322766