Improving cancer detection through computer-aided diagnosis: A comprehensive analysis of nonlinear and texture features in breast thermograms
Hamed Khodadadi and
Shima Nazem
PLOS ONE, 2025, vol. 20, issue 5, 1-22
Abstract:
Breast cancer is a significant health issue for women, characterized by its high rates of mortality and sickness. However, its early detection is crucial for improving patient outcomes. Thermography, which measures temperature variations between healthy and cancerous tissues, offers a promising approach for early diagnosis. This study proposes a novel method for analyzing breast thermograms. The method segments suspicious masses, extracts relevant features, and classifies them as benign or malignant. While the chaotic indices, including Lyapunov Exponent (LE), Fractal Dimension (FD), Kolmogorov–Sinai Entropy (KSE), and Correlation Dimension (CD), are employed for nonlinear analysis, the Gray-Level Co-occurrence Matrix (GLCM) method utilized for extracting the texture features. The effectiveness of the proposed approach is enhanced by integrating texture and complexity features. Besides, to optimize feature selection and reduce redundancy, a metaheuristic optimization technique called Non-Dominated Sorting Genetic Algorithm (NSGA III) is applied. The proposed method utilizes various machine learning algorithms, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Pattern recognition Network (Pat net), and Fitting neural Network (Fit net), for classification. ten-fold cross-validation ensures robust performance evaluation. The achieved accuracy of 98.65%, emphasizes the superior performance of the proposed method in thermograms breast cancer diagnosis.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322934 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22934&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322934
DOI: 10.1371/journal.pone.0322934
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().