EconPapers    
Economics at your fingertips  
 

The variable selection of two-part regression model for semicontinuous data

Yahui Lu, Aiyi Liu and Tao Jiang

PLOS ONE, 2025, vol. 20, issue 6, 1-22

Abstract: In many research fields, measurement data containing too many zeros are often called semicontinuous data. For semicontinuous data, the most common method is the two-part model, which establishes the corresponding regression model for both the zero-valued part and the nonzero-valued part. Considering that each part of the two-part regression model often encounters a large number of candidate variables, the variable selection becomes an important problem in semicontinuous data analysis. However, there is little research literature on this topic. To bridge this gap, we propose a new type of variable selection methods for the two-part regression model. In this paper, the Bernoulli-Normal two-part (BNT) regression model is presented, and a variable selection method based on Lasso penalty function is proposed. To solve the problem that Lasso estimator does not have Oracle attribute, we then propose a variable selection method based on adaptive Lasso penalty function. The simulation results show that both methods can select variables for BNT regression model and are easy to implement, and the performance of adaptive Lasso method is superior to the Lasso method. We demonstrate the effectiveness of the proposed tools using dietary intake data to further analyze the important factors affecting dietary intake of patients.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322937 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22937&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0322937

DOI: 10.1371/journal.pone.0322937

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-21
Handle: RePEc:plo:pone00:0322937