A high-efficiency palmprint recognition model integrating ROI and Gabor filtering
Nan Zhang and
Maolong Xi
PLOS ONE, 2025, vol. 20, issue 6, 1-19
Abstract:
Palmprint recognition, as a biometric recognition technology, has unique individual recognition and high accuracy, and is broadly utilized in fields such as identity verification and security monitoring. Therefore, a palm print recognition model that integrates regions of interest and Gabor filters has been proposed to solve the problem of difficulty in feature extraction caused by factors such as noise, lighting changes, and acquisition angles that often affect palm print images during the acquisition process. This model extracts standardized feature regions of palmprint images through the region of interest method, enhances texture features through multi-scale Gabor filters, and finally uses support vector machines for classification. The experiment findings denote that the region of interest model performs better than other methods in terms of signal-to-noise ratio and root mean square error, with a signal-to-noise ratio of 0.89 on the GPDS dataset and 0.97 on the CASIA dataset. The proposed model performs the best in recognition accuracy and error convergence speed, with a final accuracy of 95%. The proposed model has the shortest running time, less than 0.4 seconds in all groups, especially less than 0.3 seconds in Group 4, demonstrating high recognition efficiency. The research conclusion shows that the palmprint recognition method combining regions of interest and Gabor filters has high efficiency and performance, and can effectively improve recognition accuracy.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323373 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23373&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323373
DOI: 10.1371/journal.pone.0323373
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().