EconPapers    
Economics at your fingertips  
 

Research on path planning of robotic arms based on DAPF-RRT algorithm

Zhenggang Wang, Junyang Tang, Fangxu Yi, Xiangrui Ren and Kunxiang Wang

PLOS ONE, 2025, vol. 20, issue 5, 1-20

Abstract: In response to the widely used RRT-Connect path planning algorithm in the field of robotic arms, which has problems such as long search time, random node growth, multiple and unsmooth path turns, a path planning algorithm combining dynamic step size and artificial potential field is proposed. To solve the problem of scattered sampling points in the RRT-Connect algorithm, a goal-biased strategy is introduced. To address the problem of slow expansion caused by using fixed step sizes, a dynamic step size strategy is introduced to dynamically adjust the step size. To reduce randomness in the expansion process, the artificial potential field method is integrated to constrain the growth of new nodes by the random sampling function, the target gravitational function and the repulsion function. Finally, the planned path is pruned and smoothed using cubic B-splines to improve redundant points and turns in the path, and reduce the occurrence of shaking during the motion of the robotic arm. In the same environment, the improved algorithm reduces path length by 15.4% and planning time by 49.2%, compared with the RRT-Connect algorithm.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323734 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23734&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323734

DOI: 10.1371/journal.pone.0323734

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0323734