Higher-order temporal network prediction and interpretation
(Bart) Peters Ha,
Alberto Ceria and
Huijuan Wang
PLOS ONE, 2025, vol. 20, issue 5, 1-22
Abstract:
A social interaction (so-called higher-order event/interaction) can be regarded as the activation of a hyperlink among the corresponding individuals. Social interactions can be, thus, represented as higher-order temporal networks that record the higher-order events occurring at each time step over time. The prediction of higher-order interactions is usually overlooked in traditional temporal network prediction methods, where a higher-order interaction is regarded as a set of pairwise interactions. The prediction of future higher-order interactions is crucial to forecast and mitigate the spread of information, epidemics and opinion on higher-order social contact networks. In this paper, we propose novel memory-based models for higher-order temporal network prediction. By using these models, we aim to predict the higher-order temporal network one time step ahead, based on the network observed in the past. Importantly, we also intend to understand what network properties and which types of previous interactions enable the prediction. The design and performance analysis of these models is supported by our analysis of the memory property of networks, e.g., similarity of the network and activity of a hyperlink over time, respectively. Our models assume that a target hyperlink’s future activity (active or not) depends on the past activity of the target link and of all or selected types of hyperlinks that overlap with the target. We then compare the performance of our models with three baseline models, which are an activity driven model, a probabilistic group-change model and a pairwise temporal network prediction method. In eight real-world networks, we find that both our models consistently outperform the baselines. Moreover, the refined model, which only uses a subset of all types of overlapping hyperlinks, tends to perform the best. Our models also reveal how past interactions of the target hyperlink and different types of hyperlinks that overlap with the target contribute to the prediction of the target’s future activity.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323753 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23753&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323753
DOI: 10.1371/journal.pone.0323753
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().