EconPapers    
Economics at your fingertips  
 

T-RippleGNN: Predicting traffic flow through ripple propagation with attentive graph neural networks

Anning Ji and Xintao Ma

PLOS ONE, 2025, vol. 20, issue 5, 1-15

Abstract: Recently, accurate traffic flow prediction has become a significant part of intelligent transportation systems, which can not only satisfy citizens’ travel need and life satisfaction, but also benefit urban traffic management and control. However, traffic forecasting remains highly challenging because of its complexity in both topology structure and time transformation. Inspired by the propagation idea of graph convolutional networks, we propose ripple-propagation-based attentive graph neural networks for traffic flow prediction (T-RippleGNN). Firstly, we adopt Ripple propagation to capture the topology structure of the traffic spatial model. Then, a GRU-based model is used to explore the traffic model through the timeline. Lastly, those two factors are combined and attention scores are assigned to differentiate their influences on the traffic flow prediction. Furthermore, we evaluate our approach with three real-world traffic datasets. The results show that our approach reduces the prediction errors by approximately 2.24%-62,93% compared with state-of-the-art baselines, and the effectiveness of T-RippleGNN in traffic forecasting is demonstrated.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323787 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23787&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323787

DOI: 10.1371/journal.pone.0323787

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0323787