EconPapers    
Economics at your fingertips  
 

Development of a risk prediction model for sepsis-related delirium based on multiple machine learning approaches and an online calculator

Lang Gao, Guang Dong Wang, Xing Yi Yang, Shi Jun Tong, Xu Jie Wang, Yun Ruo Chen, Jin Ying Bai and Ya Xin Zhang

PLOS ONE, 2025, vol. 20, issue 7, 1-20

Abstract: Background: Sepsis-associated delirium (SAD) occurs due to disruptions in neurotransmission linked to inflammatory responses from infections. It poses significant challenges in clinical management and is associated with poor outcomes. Survivors often experience long-term cognitive and behavioral issues that impact their quality of life and place a burden on their families. This study aimed to develop and validate an interpretable machine learning model for early prediction of SAD in critically ill patients. Additionally, we constructed an online risk calculator to facilitate real-time clinical assessment. Methods: This study is a retrospective analysis utilizing data from 16,120 patients in the Medical Information Mart for Intensive Care IV database. To manage imbalanced data, we applied the Synthetic Minority Over-sampling Technique (SMOTE) method. Feature selection was conducted using Multivariate Logistic Regression, LASSO regression, and the Boruta algorithm. We developed predictive models using eight machine learning algorithms and selected the best one for validation. The SHapley Additive exPlanations (SHAP) method was used for visualization and interpretation, enhancing the clinical understanding of the model, alongside the creation of an online web calculator. Results: We combined three feature selection methods to identify 17 key features for our machine learning prediction model. The Gradient Boosting Machine (GBM) model demonstrated excellent calibration and strong predictive accuracy in the validation cohort. The SHAP feature importance ranking revealed five critical risk factors for predicting outcomes: Glasgow Coma Scale (GCS), ICU stay duration, chloride, sodium, and Sequential Organ Failure Assessment (SOFA). Based on this optimal model, we successfully developed an online web calculator. Conclusion: We developed and validated a machine learning model capable of accurately predicting SAD with high clinical applicability. The integration of interpretable machine learning and an online calculator offers a practical tool to support early identification and timely management of SAD in critically ill patients.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323831 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23831&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323831

DOI: 10.1371/journal.pone.0323831

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-19
Handle: RePEc:plo:pone00:0323831