Research on anti-rollover active control of sports utility vehicle with time-delay compensation function
Dongtao Wang,
Yifan Hu,
Xuan Liu,
Yanjian Shen and
Rong Wang
PLOS ONE, 2025, vol. 20, issue 5, 1-22
Abstract:
The global incidence of traffic accidents caused by vehicle rollovers has exhibited a persistent upward trajectory in recent years. This paper proposes a novel rollover prevention control method incorporating time-delay compensation to address inherent latency issues in anti-rollover control systems (ARCS). First, structural parameters and dynamic theory establish a three-degree-of-freedom (3-DOF) dynamics model for a sport utility vehicle (SUV). Subsequently, a lateral load transfer ratio (LTR) estimation model is developed and validated under J-turn test conditions. A grey prediction model is then implemented to forecast LTR values in advance, compensating for system time delays. A two-dimensional fuzzy controller, utilizing error and error change rate as inputs, generates corrective yaw moment through differential braking to maintain vehicle stability. Co-simulation experiments conducted in CarSim and MATLAB/Simulink under typical driving scenarios demonstrate that the proposed method effectively mitigates ARCS time delays while preserving driving stability. The results suggest this approach provides both a practical solution for SUV rollover prevention and a conceptual advancement for vehicle active safety systems, showing strong potential for real-world implementation to reduce rollover risks and enhance road safety.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323996 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23996&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323996
DOI: 10.1371/journal.pone.0323996
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().