EconPapers    
Economics at your fingertips  
 

Heterogeneity of diagnosis and documentation of post-COVID conditions in primary care: A machine learning analysis

Nathaniel Hendrix, Rishi V Parikh, Madeline Taskier, Grace Walter, Ilia Rochlin, Sharon Saydah, Emilia H Koumans, Oscar Rincón-Guevara, David H Rehkopf and Robert L Phillips

PLOS ONE, 2025, vol. 20, issue 5, 1-12

Abstract: Background: Post-COVID conditions (PCC) have proven difficult to diagnose. In this retrospective observational study, we aimed to characterize the level of variation in PCC diagnoses observed across clinicians from a number of methodological angles and to determine whether natural language classifiers trained on clinical notes can reconcile differences in diagnostic definitions. Methods: We used data from 519 primary care clinics around the United States who were in the American Family Cohort registry between October 1, 2021 (when the ICD-10 code for PCC was activated) and November 1, 2023. There were 6,116 patients with a diagnostic code for PCC (U09.9), and 5,020 with diagnostic codes for both PCC and COVID-19. We explored these data using 4 different outcomes: 1) Time between COVID-19 and PCC diagnostic codes; 2) Count of patients with PCC diagnostic codes per clinician; 3) Patient-specific probability of PCC diagnostic code based on patient and clinician characteristics; and 4) Performance of a natural language classifier trained on notes from 5,000 patients annotated by two physicians to indicate probable PCC. Results: Of patients with diagnostic codes for PCC and COVID-19, 61.3% were diagnosed with PCC less than 12 weeks after initial recorded COVID-19. Clinicians in the top 1% of diagnostic propensity accounted for more than a third of all PCC diagnoses (35.8%). Comparing LASSO logistic regressions predicting documentation of PCC diagnosis, a log-likelihood test showed significantly better fit when clinician and practice site indicators were included (p

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324017 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24017&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324017

DOI: 10.1371/journal.pone.0324017

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0324017