EconPapers    
Economics at your fingertips  
 

Prediction and accuracy improvement of insulin pump in-fusion deviation based on LSTM and PID

Leijie Wang, Xudong Guo, Qiuyue Peng, Hongmei Zhang, Yuan Yang, Hongyan Wang, Yongxin Wang, Haofang Liang, Wuyi Ming and Zhen Zhang

PLOS ONE, 2025, vol. 20, issue 6, 1-21

Abstract: In order to further improve the injection precision of the PH300 insulin pump, this paper optimizes and improves the mechanical structure and control algorithm of the PH300. The improved PH300 uses a proportional-integral-derivative controller based on back propagation neural network (BP-PID) algorithm to control operation, and the experimental results show that the minimum effective single infusion dose of the improved PH300 is 0.047 U, which is reduced by 50.52%. The deviation reduction of low-dose infusion (0.1U-0.9U) ranged from 1.47% to 10.87%, with a mean of 4.91%. The mean deviation of the improved PH300 decreases by 12.85% after a 24h low basal rate (0.5U/h) injection. In addition, Long Short-Term Memory (LSTM) was used to predict the deviation during injection, and the predicted values were uniformly compensated for in subsequent injection experiments. The LSTM model performed best with a training set of 85%, a test set of 15%, an epoch of 300, a batch number of 256, and 32 hidden layer neurons. After compensation, the mean infusion deviation for large doses was reduced by 12.05%, and the maximum deviation by 14.12%.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324261 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24261&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324261

DOI: 10.1371/journal.pone.0324261

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-21
Handle: RePEc:plo:pone00:0324261