An explainable and federated deep learning framework for skin cancer diagnosis
Shuvo Biswas,
Sajeeb Saha,
Muhammad Shahin Uddin and
Rafid Mostafiz
PLOS ONE, 2025, vol. 20, issue 7, 1-19
Abstract:
Skin cancer (SC) is the most prominent form of cancer in humans, with over 1 million new cases reported worldwide each year. Early identification of SC plays a crucial role in effective treatment. However, protecting patient data privacy is a major concern in medical research. Therefore, this study presents a smart framework for classifying SC leveraging deep learning (DL), federated learning (FL) and explainable AI (XAI). We tested the presented framework on two well-known datasets, ISBI2016 and ISBI2017. The data was first preprocessed by several techniques: resizing, normalization, balancing, and augmentation. Six advanced DL algorithms—VGG16, Xception, DenseNet169, InceptionV3, MobileViT, and InceptionResNetV2—were applied for classification tasks. Among these, the DenseNet169 algorithm obtained the highest accuracy of 83.3% in ISBI2016 and 92.67% in ISBI2017. All models were then tested in an FL platform to maintain data privacy. In the FL platform, the VGG16 algorithm showed the best results, with 92.08% accuracy on ISBI2016 and 94% on ISBI2017. To ensure model interpretability, an XAI-based algorithm named Local Interpretable Model-Agnostic Explanations (LIME) was used to explain the predictions of the proposed framework. We believe the proposed framework offers a dependable tool for SC diagnosis while protecting sensitive medical data.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324393 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24393&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324393
DOI: 10.1371/journal.pone.0324393
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().