EconPapers    
Economics at your fingertips  
 

An explainable and federated deep learning framework for skin cancer diagnosis

Shuvo Biswas, Sajeeb Saha, Muhammad Shahin Uddin and Rafid Mostafiz

PLOS ONE, 2025, vol. 20, issue 7, 1-19

Abstract: Skin cancer (SC) is the most prominent form of cancer in humans, with over 1 million new cases reported worldwide each year. Early identification of SC plays a crucial role in effective treatment. However, protecting patient data privacy is a major concern in medical research. Therefore, this study presents a smart framework for classifying SC leveraging deep learning (DL), federated learning (FL) and explainable AI (XAI). We tested the presented framework on two well-known datasets, ISBI2016 and ISBI2017. The data was first preprocessed by several techniques: resizing, normalization, balancing, and augmentation. Six advanced DL algorithms—VGG16, Xception, DenseNet169, InceptionV3, MobileViT, and InceptionResNetV2—were applied for classification tasks. Among these, the DenseNet169 algorithm obtained the highest accuracy of 83.3% in ISBI2016 and 92.67% in ISBI2017. All models were then tested in an FL platform to maintain data privacy. In the FL platform, the VGG16 algorithm showed the best results, with 92.08% accuracy on ISBI2016 and 94% on ISBI2017. To ensure model interpretability, an XAI-based algorithm named Local Interpretable Model-Agnostic Explanations (LIME) was used to explain the predictions of the proposed framework. We believe the proposed framework offers a dependable tool for SC diagnosis while protecting sensitive medical data.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324393 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24393&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324393

DOI: 10.1371/journal.pone.0324393

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-19
Handle: RePEc:plo:pone00:0324393