Research on road surface damage detection based on SEA-YOLO v8
Yuxi Zhao,
Baoyong Shi,
Xiaoguang Duan,
Wenxing Zhu,
Liying Ren and
Chang Liao
PLOS ONE, 2025, vol. 20, issue 6, 1-26
Abstract:
Road damage detection is of great significance to traffic safety and road maintenance. However, the existing target detection technology still has shortcomings in accuracy, real-time and adaptability. In order to meet this challenge, this study constructed SEA-YOLO v8 model for road damage detection. Firstly, the SBS module is constructed to optimize the computational complexity, achieve real-time target detection under limited hardware resources, successfully reduce the model parameters, and make the model more lightweight; Secondly, we integrate the EMA attention mechanism module into the neck component, enabling the model to utilize feature information from different layers, enabling the model to selectively focus on key areas and improve feature representation; Then, an adaptive attention feature pyramid structure is proposed to enhance the feature fusion capability of the network; Finally, lightweight shared convolutional detection head (LSCD-Head) is introduced to improve feature representation and reduce the number of parameters. The experimental results on the RDD2022 dataset show that the SEA-YOLO v8 model has achieved 63.2% mAP50. The performance is better than yolov8 model and mainstream target detection model. This shows that in complex urban traffic scenarios, the model has high detection accuracy and adaptability, can accurately locate and detect road damage, save manpower and material resources, provide guidance for road damage assessment and maintenance, and promote the sustainable development of urban roads.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324439 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24439&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324439
DOI: 10.1371/journal.pone.0324439
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().