Topic modeling and evolutionary trends of China’s language policy: A LDA-ARIMA approach
Tianxin Li,
Xigang Ke and
Hui Shi
PLOS ONE, 2025, vol. 20, issue 5, 1-19
Abstract:
Background: Language policy serves as an essential tool for governments to guide and regulate language development. However, China’s current language policy faces challenges like outdated analytical methods, inefficiencies caused by policy misalignment, and the absence of predictive frameworks. This study provides a comprehensive overview of China’s language policy by identifying key topics and predicting future trends. Methods: We employ the Latent Dirichlet Allocation topic model and Autoregressive Integrated Moving Average model systematically analyze and predict the evolution of China’s language policy. By gathering a large-scale textual data of 1,420 policy texts from 2001–2023 on official websites, we achieve both topic extraction and evolution prediction. Results: This study reveals that: (1) Language life, language education, and language resources have high popularity indexes, and language education and language planning exhibit high expected values. (2) The theme intensity of most topics has been a significant upward trend since 2014, with significant fluctuations during T1-T2. (3) From 2001 to 2023, the actual and fitted values show an overall positive trend. In 2024–2028, the predicted value of language resources stabilizes after a brief decline in 2024, while other topics show upward trends. Conclusions: This study extracts 1,420 policy texts from official websites and outlines the following findings: (1) Language policies focus on maintaining a harmonious linguistic environment, addressing educational inequality, and protecting language resources. (2) Since 2014, most topics have exhibited fluctuating yet sustained growth trend, particularly in language education and research. (3) Except for language resources, the predicted values of the remaining six topics will show a growing trend from 2024 to 2028. Based on these findings, we propose policy recommendations such as strengthening language research, developing a multilingual education system, and optimizing language resource management.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324644 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24644&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324644
DOI: 10.1371/journal.pone.0324644
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().