An automated software-assisted approach for exploring metabolic susceptibility and degradation products in macromolecules using high-resolution mass spectrometry
Paula Cifuentes,
Ismael Zamora,
Tatiana Radchenko,
Fabien Fontaine,
Albert Garriga,
Luca Morettoni,
Jesper Kammersgaard Christensen,
Hans Helleberg and
Bridget A Becker
PLOS ONE, 2025, vol. 20, issue 8, 1-28
Abstract:
A comprehensive understanding of drug metabolism is crucial for advancements in drug development. Automation has improved various stages of this process, from compound procurement to data analysis, but significant challenges persist in the metabolite identification (MetID) of macromolecules due to their size, structural complexity, and associated computational demands. This study introduces new algorithms for automated Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) data analysis applicable to macromolecules. A novel peak detection approach based on the most abundant mass (MaM) is presented and systematically compared with the monoisotopic mass (MiM) approach, commonly used in small molecules MetID. Additionally, three structure visualization strategies, expanded (atom-level), non-expanded (monomer-level), and a hybrid mode, are evaluated for their impact on computation data processing time and interpretability, based on their distinct fragmentation strategies. The workflow was validated using six diverse datasets, comprising linear and cyclic peptides and oligonucleotides with both natural and unnatural monomers, covering a molecular weight range of 700–7630 Da. A total of 970 metabolites were identified under various experimental and ionization conditions. The MaM algorithm demonstrated higher scores and a greater number of matches, instilling greater confidence in the accurate prediction of metabolite structures, while the non-expanded visualization significantly reduced processing times (ranging from minutes to under an hour for most peptides). Furthermore, the visualization algorithm, which integrates monomer-level and atom/bond notation, enables clear localization of metabolic biotransformations. Compared to previous studies, the proposed workflow demonstrated reduced processing time, consistent detection of degradation products, and enhanced visualization capabilities, advancing automated MetID for macromolecules.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324668 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24668&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324668
DOI: 10.1371/journal.pone.0324668
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().