Baltic dry index forecast using financial market data: Machine learning methods and SHAP explanations
Hyeon-Seok Kim,
Do-Hyeon Kim and
Sun-Yong Choi
PLOS ONE, 2025, vol. 20, issue 7, 1-29
Abstract:
The Baltic Dry Index (BDI) is a critical benchmark for assessing freight rates and chartering activity in the global shipping market. This study forecasts the BDI using diverse financial data, including commodities, currencies, stock markets, and volatility indices. Unlike previous research, our approach integrates financial indicators specific to major marine trading regions—the U.S., EU, and Hong Kong. We employ advanced machine learning methods, such as Extremely Randomized Trees, Categorical Boosting (CatBoost), and Random Forest, to achieve superior forecasting accuracy. Additionally, we utilize the Shapley Additive Explanations (SHAP) framework to analyze the contributions of financial features to BDI predictions. Key findings reveal that the S&P 500 index is the most influential factor, followed by significant contributions from iron ore and coal commodity indices and the dollar index, underscoring the interplay between the U.S. economy and the BDI. By integrating SHAP explanations, this study not only predicts market trends but also uncovers the economic drivers shaping the BDI. Practically, it supports the stability of the global shipping industry by enabling more informed decision-making for stakeholders. Academically, it introduces overlooked economic factors in BDI prediction, offering valuable insights and directions for future research.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325106 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25106&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0325106
DOI: 10.1371/journal.pone.0325106
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().