EconPapers    
Economics at your fingertips  
 

Biased echoes: Large language models reinforce investment biases and increase portfolio risks of private investors

Philipp Winder, Christian Hildebrand and Jochen Hartmann

PLOS ONE, 2025, vol. 20, issue 6, 1-24

Abstract: Large language models are increasingly used by private investors seeking financial advice. The current paper examines the potential of these models to perpetuate investment biases and affect the economic security of individuals at scale. We provide a systematic assessment of how large language models used for investment advice shape the portfolio risks of private investors. We offer a comprehensive model of large language model investment advice risk, examining five key dimensions of portfolio risks (geographical cluster risk, sector cluster risk, trend chasing risk, active investment allocation risk, and total expense risk). We demonstrate across four studies that large language models used for investment advice induce increased portfolio risks across all five risk dimensions, and that a range of debiasing interventions only partially mitigate these risks. Our findings show that large language models exhibit similar “cognitive” biases as human investors, reinforcing existing investment biases inherent in their training data. These findings have important implications for private investors, policymakers, artificial intelligence developers, financial institutions, and the responsible development of large language models in the financial sector.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325459 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25459&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0325459

DOI: 10.1371/journal.pone.0325459

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-26
Handle: RePEc:plo:pone00:0325459