EconPapers    
Economics at your fingertips  
 

3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network

Tingting Wang, Tong Wu, Defu Yang, Ying Xu, Dongyang Lv, Tong Jiang, Hengjiao Wang, Qi Chen, Shengnan Xu, Ying Yan and Baoguang Lin

PLOS ONE, 2025, vol. 20, issue 6, 1-24

Abstract: Purpose: To enhance glioma segmentation, a 3D-MRI intelligent glioma segmentation method based on deep learning is introduced. This method offers significant guidance for medical diagnosis, grading, and treatment strategy selection. Methods: Glioma case data were sourced from the BraTS2023 public dataset. Firstly, we preprocess the dataset, including 3D clipping, resampling, artifact elimination and normalization. Secondly, in order to enhance the perception ability of the network to different scale features, we introduce the space pyramid pool module. Then, by making the model focus on glioma details and suppressing irrelevant background information, we propose a multi-scale fusion attention mechanism; And finally, to address class imbalance and enhance learning of misclassified voxels, a combination of Dice and Focal loss functions was employed, creating a loss function, this method not only maintains the accuracy of segmentation, It also improves the recognition of challenge samples, thus improving the accuracy and generalization of the model in glioma segmentation. Results: Experimental findings reveal that the enhanced 3D U-Net network model stabilizes training loss at 0.1 after 150 training iterations. The refined model demonstrates superior performance with the highest DSC, Recall, and Precision values of 0.7512, 0.7064, and 0.77451, respectively. In Whole Tumor (WT) segmentation, the Dice Similarity Coefficient (DSC), Recall, and Precision scores are 0.9168, 0.9426, and 0.9375, respectively. For Core Tumor (TC) segmentation, these scores are 0.8954, 0.9014, and 0.9369, respectively. In Enhanced Tumor (ET) segmentation, the method achieves DSC, Recall, and Precision values of 0.8674, 0.9045, and 0.9011, respectively. Conclusions: The DSC, Recall, and Precision indices in the WT, TC, and ET segments using this method are the highest recorded, significantly enhancing glioma segmentation. This improvement bolsters the accuracy and reliability of diagnoses, ultimately providing a scientific foundation for clinical diagnosis and treatment.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325534 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25534&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0325534

DOI: 10.1371/journal.pone.0325534

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-21
Handle: RePEc:plo:pone00:0325534