EconPapers    
Economics at your fingertips  
 

A flow pattern recognition method for gas-liquid two-phase flow based on dilated convolutional channel attention mechanism

Jie Liu and Yang Wu

PLOS ONE, 2025, vol. 20, issue 6, 1-25

Abstract: Addressing the issue of insufficient key feature extraction leading to low recognition rates in existing deep learning-based flow pattern identification methods, this paper proposes a novel flow pattern image recognition model, Enhanced DenseNet with transfer learning (ED-DenseNet). The model enhances the deep feature extraction capability by introducing a multi-branch structure, incorporating an ECA attention mechanism into Dense Blocks and dilated convolutions into Transition Layers to achieve multi-scale feature extraction and refined channel information processing. Considering the limited scale of the experimental dataset, pretrained DenseNet121 weights on ImageNet were transferred to ED-DenseNet using transfer learning. On a gas-liquid two-phase flow image dataset containing Annular, Bubbly, Churn, Dispersed, and Slug flow patterns, ED-DenseNet achieved an overall recognition accuracy of 97.82%, outperforming state-of-the-art models such as Flow-Hilbert–CNN, especially in complex and transitional flow scenarios. Additionally, the model’s generalization and robustness were further validated on a nitrogen condensation two-phase flow dataset, demonstrating superior adaptability compared to other methods.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325784 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25784&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0325784

DOI: 10.1371/journal.pone.0325784

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-26
Handle: RePEc:plo:pone00:0325784