MHS-VIT: Mamba hybrid self-attention vision transformers for traffic image detection
Xude Zhang,
Weihua Ou,
Xiaoping Wu and
Changzhen Zhang
PLOS ONE, 2025, vol. 20, issue 6, 1-18
Abstract:
With the rapid development of intelligent transportation systems, especially in traffic image detection tasks, the introduction of the transformer architecture greatly promotes the improvement of model performance. However, traditional transformer models have high computational costs during training and deployment due to the quadratic complexity of their self-attention mechanism, which limits their application in resource-constrained environments. To overcome this limitation, this paper proposes a novel hybrid architecture, Mamba Hybrid Self-Attention Vision Transformers (MHS-VIT), which combines the advantages of Mamba state-space model (SSM) and transformer to improve the modeling efficiency and performance of visual tasks and to enhance the modeling efficiency and accuracy of the model in processing traffic images. Mamba, as a linear time complexity SSM, can effectively reduce the computational burden without sacrificing performance. The self-attention mechanism of the transformer is good at capturing long-distance spatial dependencies in images, which is crucial for understanding complex traffic scenes. Experimental results showed that MHS-VIT exhibited excellent performances in traffic image detection tasks. Whether it is vehicle detection, pedestrian detection, or traffic sign recognition tasks, this model could accurately and quickly identify target objects. Compared with backbone networks of the same scale, MHS-VIT achieved significant improvements in accuracy and model parameter quantity.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325962 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25962&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0325962
DOI: 10.1371/journal.pone.0325962
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().