EconPapers    
Economics at your fingertips  
 

Federated k-means based on clusters backbone

Zilong Deng, Yizhang Wang and Mustafa Muwafak Alobaedy

PLOS ONE, 2025, vol. 20, issue 6, 1-14

Abstract: Federated clustering is a distributed clustering algorithm that does not require the transmission of raw data and is widely used. However, it struggles to handle Non-IID data effectively because it is difficult to obtain accurate global consistency measures under Non-Independent and Identically Distributed (Non-IID) conditions. To address this issue, we propose a federated k-means clustering algorithm based on a cluster backbone called FKmeansCB. First, we add Laplace noise to all the local data, and run k-means clustering on the client side to obtain cluster centers, which faithfully represent the cluster backbone (i.e., the data structures of the clusters). The cluster backbone represents the client’s features and can approximatively capture the features of different labeled data points in Non-IID situations. We then upload these cluster centers to the server. Subsequently, the server aggregates all cluster centers and runs the k-means clustering algorithm to obtain global cluster centers, which are then sent back to the client. Finally, the client assigns all data points to the nearest global cluster center to produce the final clustering results. We have validated the performance of our proposed algorithm using six datasets, including the large-scale MNIST dataset. Compared with the leading non-federated and federated clustering algorithms, FKmeansCB offers significant advantages in both clustering accuracy and running time.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326145 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26145&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0326145

DOI: 10.1371/journal.pone.0326145

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-21
Handle: RePEc:plo:pone00:0326145