Port terminal mobile recognition based on combined YOLOv5s-DeepSort
Chengzhi Wang,
Donghong Chen,
Zhen Liu,
Yuanhao Li,
Yifei Wang and
Sanglan Zhao
PLOS ONE, 2025, vol. 20, issue 7, 1-23
Abstract:
To solve the problem of reduced positioning accuracy caused by changes in scale, background and occlusion in port and dock video images, this research proposes an enhanced model combining YOLOv5s-DeepSORT, integrating target load recognition and trajectory tracking to improve adaptability to dock environments. The findings indicate that incorporating multi-scale convolution into YOLOv5s improved the robustness of multi-scale object detection, resulting in a 0.4% increase in mean Average Precision (mAP). Furthermore, the integration of an efficient pyramid segmentation attention (EPSA) network enhanced the accuracy of multi-scale feature fusion representation. The model’s mAP@0.5:0.95 increased by 1.2% following the introduction of EPSA. Finally, the original classification loss function was enhanced using a distributed sorting loss approach to mitigate the imbalance among loaded objects and the influence of background variations in the dock image sequence. This optimization led to a 3.1% improvement in multi-target tracking accuracy (MOTA). Experimental results on self-constructed datasets demonstrated an average accuracy of 90.9% and a detection accuracy of 92.2%, offering a valuable reference for target recognition and tracking in port and dock environments.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326376 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26376&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0326376
DOI: 10.1371/journal.pone.0326376
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().