EconPapers    
Economics at your fingertips  
 

Signals of complexity and fragmentation in accelerometer data

Els Weinans, Jerrald L Rector, Sarah Charman, Renae J Stefanetti, Cecilia Jimenez-Moreno, Gráinne S Gorman, Ingrid van de Leemput, Daniël van As, René Melis and Baziel van Engelen

PLOS ONE, 2025, vol. 20, issue 7, 1-18

Abstract: There is a growing interest to analyze physiological data from a complex systems perspective. Accelerometer data is one type of data that is easy to obtain but often difficult to analyze for insights beyond basic levels of description. Previous work hypothesizes that an individual’s activity pattern can be seen as a complex dynamical system. Here, we explore this hypothesis further by investigating whether complexity-based measures quantifying repetitiveness and fragmentation of activity captured via accelerometer can detect health differences beyond traditional measures. Our results demonstrate that healthy individuals have a higher regularity (indicated by a lower correlation dimension), a higher probability of activity after a period of rest, and a lower probability of a period of rest after a period of activity compared with patients living with Myotonic Dystrophy type I (DM1), a chronic, progressive, complex, multisystem disease. For the correlation dimension, this difference was independent of the average, coefficient of variation and autocorrelation of the activity signals. This suggests that the correlation dimension can extract clinically relevant information from accelerometer data. Therefore, our results corroborate the idea that a complexity perspective may help to reveal the emergent characteristics of health and disease.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326522 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26522&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0326522

DOI: 10.1371/journal.pone.0326522

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-11-01
Handle: RePEc:plo:pone00:0326522