EconPapers    
Economics at your fingertips  
 

Complex crater formation by low energy impactors

Rodrigo Tardini Paulino, Thiago Oblesrczuk, Julia Lencioni Aliboni, Annibal Hetem Junior and Jeroen Schoenmaker

PLOS ONE, 2025, vol. 20, issue 11, 1-13

Abstract: We investigate the formation of complex craters in low-energy laboratory impacts using layered granular beds and a range of impactors, including solid, liquid, and granular types. Shallow granular targets change how the impact energy is dissipated, resulting in power-law scalings for the crater diameter that depart from those observed in homogeneous targets. An adaptation of the well-known Schmidt-Holsapple scaling was made to explain the impacts made from the liquid droplets. Furthermore, we show that the layered target promotes the formation of complex crater features, including flat floors and central peaks, even at low impact energies, through an essentially distinct process when compared to high energy impacts. In particular, granular impactors consistently produce ring-shaped craters, a result explained by a mechanism analogous to air entrapment in droplet impacts. This ring-like morphology was also successfully reproduced in simulations using a modelling approach developed in this work. These findings suggest that layered targets can reproduce features typical of planetary-scale complex craters at the laboratory scale, opening new avenues for small-scale experimental studies of impact dynamics with potential applications in planetary geology and civil engineering.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326628 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26628&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0326628

DOI: 10.1371/journal.pone.0326628

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-11-16
Handle: RePEc:plo:pone00:0326628