EconPapers    
Economics at your fingertips  
 

Personalized trajectory inference framework integrating driving behavior recognition and temporal dependency learning

Jinhao Yang, Junwen Cao and Mingyu Fang

PLOS ONE, 2025, vol. 20, issue 7, 1-18

Abstract: This study proposes a Driving style-Tri Channel Trajectory Model (DS-TCTM) to enhance vehicle trajectory prediction accuracy and driving safety. The framework operates through three rigorously designed stages: (1)Data preprocessing involving kinematics feature extraction, (2)Driving style recognition utilizing acceleration variation rate and average time headway combined with K-Means++ traffic density clustering and K-neighbor Gaussian mixture model (K-GMM) analysis to classify driving behaviors into conservative, moderate, and radical categories, and (3)Personalized trajectory prediction employing a multi-level neural architecture with dedicated sub-networks for distinct driving styles. Experimental evaluations demonstrate DS-TCTM’s superior performance across multiple dimensions. The model achieves a mean RMSE of 4.46 and NLL of 3.89 across varying prediction horizons, with 35.8% error reduction attained after 100 hyperparameter optimization iterations. Comparative analysis with baseline models (LSTM, Social-LSTM, Social-Velocity-LSTM, Convolutional-Social-LSTM) reveals particularly enhanced accuracy in long-term predictions. These results confirm DS-TCTM’s effectiveness in capturing driving style impacts on trajectory patterns, providing reliable prediction enhancements for vehicle safety systems. This methodology advances personalized trajectory modeling with practical intelligent transportation applications.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326937 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26937&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0326937

DOI: 10.1371/journal.pone.0326937

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-26
Handle: RePEc:plo:pone00:0326937