EconPapers    
Economics at your fingertips  
 

FCRNet: Fast Fourier convolutional residual network for ventilator bearing fault diagnosis

Yu Cao, Yongzhi Du, Likun Le, Xiaoxue Li and Yanfang Gao

PLOS ONE, 2025, vol. 20, issue 7, 1-22

Abstract: This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327342 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 27342&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0327342

DOI: 10.1371/journal.pone.0327342

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-26
Handle: RePEc:plo:pone00:0327342