EconPapers    
Economics at your fingertips  
 

Exploring entropy measures with topological indices on colorectal cancer drugs using curvilinear regression analysis and machine learning approaches

Maria Fazal, Salma Kanwal, Muhammad Taskeen Raza and Asima Razzaque

PLOS ONE, 2025, vol. 20, issue 7, 1-34

Abstract: A topological index is a numerical value derived from the structure of a molecule or graph that provides useful information about the molecule’s physical, chemical, or biological properties. These indices are especially important in chemo-informatics and QSAR/QSPR (Quantitative Structure-Activity Relationship/Quantitative Structure-Property Relationship) studies, where they are used to predict a wide range of properties without the need for experimental measurements. In essence, a topological index is a way to quantify the molecular structure in a form that can be used in mathematical models to estimate the molecule’s behavior, activity, or properties. In terms of chemical graph theory and chemo-informatics, entropy-based indices quantify the structural complexity or disorder in a molecule’s connectivity. These indices are useful for modeling and predicting molecular properties and biological activities. In this paper, we established a QSPR analysis of colorectal drugs between entropy indices and their physical properties and developed a relationship. Through a comprehensive analysis of these drugs, we gain essential insights into their molecular properties, which are vital for predicting their behavior and effectiveness in treating colorectal cancer. These models are compared with existing degree-based models, highlighting the superior performance of our approach. The QSPR study is performed using curvilinear regression models including linear, quadratic, cubic exponential and logarithmic models. Additionally, we propose the integration of machine learning (ML) techniques to further enhance the predictive accuracy and robustness of our models. By leveraging advanced ML algorithms, we aim to uncover more complex, non-linear relationships between topological indices and drug efficacy, potentially leading to more accurate predictions and better-informed drug design strategies.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327369 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 27369&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0327369

DOI: 10.1371/journal.pone.0327369

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-26
Handle: RePEc:plo:pone00:0327369