Development and validation of a nomogram for predicting false negative IGRA results in pulmonary tuberculosis patients using propensity score matching
Feng Zhang,
Yong Gao,
Tuantuan Li and
Wei Zhang
PLOS ONE, 2025, vol. 20, issue 7, 1-13
Abstract:
Objective: This study aims to explore factors influencing false-negative results in Interferon-Gamma Release Assay (IGRA) for patients with Pulmonary Tuberculosis (PTB), and develop a nomogram model to predict IGRA false negatives, thereby optimizing clinical diagnosis and treatment decisions. Methods: Data were collected from January 2023 to September 2024 at the Second People’s Hospital of Fuyang City, involving 143 PTB patients. Among them, 63 patients who were IGRA negative but pathogen positive formed the observation group, while 80 patients who were both IGRA and pathogen positive constituted the control group. Propensity Score Matching (PSM) was used to balance potential confounding factors between the two groups. Clinical characteristics and laboratory indicators were compared, followed by logistic regression analysis to identify independent risk factors affecting IGRA results. A nomogram model was constructed based on these factors and its predictive performance evaluated. Results: After PSM, each group consisted of 55 patients. The observation group showed significantly lower levels of white blood cell count (WBC), neutrophil count (NEUT), lymphocyte count (LYM), red blood cell count (RBC), hemoglobin (HGB), and albumin (ALB) compared to the control group (P
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327767 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 27767&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0327767
DOI: 10.1371/journal.pone.0327767
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().