Small target detection algorithm based on the fusion attention mechanism and multi-layer convolution
Xiujing Li,
Haifei Zhang,
Yiliu Hang and
Hao Chen
PLOS ONE, 2025, vol. 20, issue 7, 1-18
Abstract:
In the realm of unmanned aerial vehicles, we proposed an enhanced small target detection algorithm, MGAC-YOLO, to address the challenges of missed detections and low accuracy associated with small target identification. Initially, we designed the MConv (Multi-layer Convolution) module to replace the conventional Conv module within the backbone network, thereby augmenting the dimensionality of information capture and enhancing the detection performance for small targets. Subsequently, we harnessed the advantages of both attention mechanisms—GAM (Global Attention Mechanism) and CloAttention (Contextualized Local and Global Attention)—to create a GACAttention module that extracts small target features from both global and local perspectives, thereby enriching the network’s focus on small target feature information and further enhancing its feature processing capabilities. Finally, we incorporated an additional small target detection layer to capture feature information at a shallower level, thereby reducing the likelihood of missed detections and bolstering the detection capabilities for small targets. Experimental results on the VisDrone2019 dataset demonstrate that the Precision, mAP50, and mAP50-95 of the MGAC-YOLO algorithm have improved by 5.3%, 6.3%, and 4.4%, respectively, in comparison to the baseline model YOLOv8s. Furthermore, when compared to other leading algorithms, the MGAC-YOLO algorithm has exhibited notable superiority.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328003 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28003&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0328003
DOI: 10.1371/journal.pone.0328003
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().