Indigenous wood species classification using a multi-stage deep learning with grad-CAM explainability and an ensemble technique for Northern Bangladesh
Ashrafun Zannat,
Md Saiful Islam,
Md Shahriar Zaman and
Sadman Saif
PLOS ONE, 2025, vol. 20, issue 7, 1-38
Abstract:
Wood species recognition has recently emerged as a vital field in the realm of forestry and ecological conservation. Early studies in this domain have offered various methods for classifying distinct wood species found worldwide using data collected from a particular region. An image dataset has been developed for wood species classification of Bangladeshi forest. Our aim is to address the gaps by comparing and contrasting our developed sequential Convolutional Neural Network based BdWood model with several deep learning, ensemble technique, Machine learning classification models on specific wood species identification for Bangladeshi forests. Using our own dataset, comprising more than 7119 high-quality captured images representing seven types of wood species of Bangladesh. It is found that DenseNet121 is the clear winner in our thorough evaluation among seven pre-trained models. The highest accuracy of DenseNet121 is achecived 97.09%. In addition, our customized BdWood model, which is adapted to the desired outcome, produced results that are excellent. BdWood model achieves a training accuracy of 99.80%, validation accuracy of 97.93%, an F1-score of 97.94%, and an outstanding ROC-AUC of 99.85%, demonstrating its effectiveness in wood species classification. Gradient-weighted Class Activation Mapping (Grad CAM) is used to interpret the model’s predictions, providing insights into the features contributing to the classification decisions. Finally, to make our research practically applicable, we have also developed an Android application as a tangible outcome of this work.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328102 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28102&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0328102
DOI: 10.1371/journal.pone.0328102
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().