EconPapers    
Economics at your fingertips  
 

Data-driven personalized marketing strategy optimization based on user behavior modeling and predictive analytics: Sustainable market segmentation and targeting

Bin Sun

PLOS ONE, 2025, vol. 20, issue 7, 1-18

Abstract: Personalized recommendation remains a central challenge in modern marketing systems due to the complexity of user-product-query interactions. In this study, we propose a novel framework called DP-GCN (Deterministic Policy Graph Convolutional Network), which integrates multi-level Graph Convolutional Networks (GCNs) with Deep Deterministic Policy Gradient (DDPG) reinforcement learning to model heterogeneous information networks composed of users, products, and search queries. The proposed framework consists of three key components: (1) a graph-based embedding module to capture multi-relational structures; (2) a fusion layer that integrates dynamic and static features from users and items; and (3) a reinforcement learning layer that adaptively updates recommendation policies based on user feedback. We evaluate our model on several public benchmark datasets and a real-world dataset collected from a local e-commerce platform. Results demonstrate that DP-GCN consistently outperforms state-of-the-art baselines in AUC, Precision@K, and NDCG@K. The findings highlight the effectiveness of combining graph-based relational modeling with reinforcement learning for improving both the accuracy and adaptability of personalized recommendation systems.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328151 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28151&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0328151

DOI: 10.1371/journal.pone.0328151

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-07-26
Handle: RePEc:plo:pone00:0328151