Multi-scale feature pyramid network with bidirectional attention for efficient mural image classification
Shulan Wang,
Siyu Liu,
Mengting Jin and
Pingmei Fan
PLOS ONE, 2025, vol. 20, issue 8, 1-15
Abstract:
Mural image recognition plays a critical role in the digital preservation of cultural heritage; however, it faces cross-cultural and multi-period style generalization challenges, compounded by limited sample sizes and intricate details, such as losses caused by natural weathering of mural surfaces and complex artistic patterns.This paper proposes a deep learning model based on DenseNet201-FPN, incorporating a Bidirectional Convolutional Block Attention Module (Bi-CBAM), dynamic focal distillation loss, and convex regularization. First, a lightweight Feature Pyramid Network (FPN) is embedded into DenseNet201 to fuse multi-scale texture features (28 × 28 × 256, 14 × 14 × 512, 7 × 7 × 1024). Second, a bidirectional LSTM-driven attention module iteratively optimizes channel and spatial weights, enhancing detail perception for low-frequency categories. Third, a dynamic temperature distillation strategy (T = 3 → 1) balances supervision from teacher models (ResNeXt101) and ground truth, improving the F1-score of rare classes by 6.1%. Experimental results on a self-constructed mural dataset (2,000 images,26 subcategories.) demonstrate 87.9% accuracy (+3.7% over DenseNet201) and real-time inference on edge devices (63ms/frame at 8.1W on Jetson TX2). This study provides a cost-effective solution for large-scale mural digitization in resource-constrained environments.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328507 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28507&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0328507
DOI: 10.1371/journal.pone.0328507
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().