Application of PSO-integrated K-means algorithm in resident digital portrait classification
Hongwei Yue,
Hejuan Zhang and
Yuqiao Dai
PLOS ONE, 2025, vol. 20, issue 8, 1-15
Abstract:
As digital governance progresses rapidly, constructing digital portraits of residents has become instrumental in enhancing local-level administrative capabilities. Nonetheless, traditional K-means clustering algorithms struggle with the classification of high-dimensional and complex data, thereby limiting their effectiveness. To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. Drawing on comprehensive resident information collected in 2023 from a community management system, the method leverages PSO’s global optimization abilities alongside K-means’ iterative refinement to dynamically update cluster centroids. Performance evaluation shows a significant uplift in clustering metrics, with a silhouette score of 0.752 ± 0.021 and inter-cluster distance of 1.493 ± 0.036. Comparative analysis against conventional and advanced methods (e.g., GA-K-means, DBSCAN) reveals that PSO-KM delivers superior outcomes. Among different feature categories, behavioral data yield the best classification performance, with a silhouette value of 0.184, highlighting the discriminatory power of dynamic behavioral traits. Furthermore, segmentation results disclose varying dominant features across income brackets: demographic factors are primary for low-income groups, behavioral metrics dominate middle-income segments, while social network indicators are key for high-income populations. These insights confirm PSO-KM’s potential in refining digital profiling processes and fostering the advancement of grassroots digital governance practices.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329123 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29123&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0329123
DOI: 10.1371/journal.pone.0329123
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().