EconPapers    
Economics at your fingertips  
 

Divide-and-conquer routing for learning heterogeneous individualized capsules

Hailei Yuan and Qiang Ren

PLOS ONE, 2025, vol. 20, issue 7, 1-25

Abstract: Capsule Networks (CapsNets) have demonstrated an enhanced ability to capture spatial relationships and preserve hierarchical feature representations compared to Convolutional Neural Networks (CNNs). However, the dynamic routing mechanism in CapsNets introduces substantial computational costs and limits scalability. In this paper, we propose a divide-and-conquer routing algorithm that groups primary capsules, enabling the model to leverage independent feature subspaces for more precise and efficient feature learning. By partitioning the primary capsules, the initialization of coupling coefficients is aligned with the hierarchical structure of the capsules, addressing the limitations of existing initialization strategies that either disrupt feature aggregation or lead to excessively small activation values. Additionally, the grouped routing mechanism simplifies the iterative process, reducing computational overhead and improving scalability. Extensive experiments on benchmark image classification datasets demonstrate that our approach consistently outperforms the original dynamic routing algorithm as well as other state-of-the-art routing strategies, resulting in improved feature learning and classification accuracy. Our code is available at: https://github.com/rqfzpy/DC-CapsNet.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329202 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29202&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0329202

DOI: 10.1371/journal.pone.0329202

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-08-02
Handle: RePEc:plo:pone00:0329202