Automatic detection of foreign object intrusion along railway tracks based on MACENet
Xichun Chen,
Yu Tian,
Ming Li,
Bin Lv,
Shuo Zhang,
Zixian Qu,
Jianqing Wu and
Shiya Cheng
PLOS ONE, 2025, vol. 20, issue 8, 1-24
Abstract:
Ensuring high accuracy and efficiency in foreign object intrusion detection along railway lines is critical for guaranteeing railway operational safety under limited resource conditions. However, current visual detection methods generally exhibit limitations in effectively handling diverse object shapes, scales, and varying environmental conditions, while typically incurring substantial computational overhead. To overcome these limitations, this study proposes a multi-level feature aggregation and context enhancement network (MACE-Net). The network architecture integrates the GOLD-YOLO module, an advanced object detection approach, alongside the updated deformable convolutional networks (DCNv3). The incorporation of DCNv3 allows the model to dynamically adapt its sampling positions according to actual object shapes, significantly enhancing feature extraction accuracy, especially for irregularly shaped intrusions. Additionally, the convolutional block attention module (CBAM) is employed to refine spatial and channel-wise feature representation, enabling the model to emphasize crucial object characteristics without substantially increasing computational complexity. Meanwhile, to improve localization robustness, the generalized intersection over union (GIoU) loss function is implemented, offering more reliable detection across various object sizes and shapes. Furthermore, to address the shortage of domain-specific datasets, we created a railway intrusion dataset comprising 7,200 images. Experimental results demonstrate that MACE-Net achieves superior detection performance, improving mAP@0.5 from 78.9% (baseline YOLOv8) to 83.8%—a notable increase of 4.9%. Meanwhile, the F1-score also rises by 5.2%. Importantly, despite significant accuracy gains, MACE-Net maintains computational efficiency similar to that of the baseline, affirming its suitability for real-time railway foreign object detection tasks under constrained energy and computational environments.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329303 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29303&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0329303
DOI: 10.1371/journal.pone.0329303
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().