Federated TriNet-AQ: Explainable english proficiency classification in augmented and virtual reality learning
Chunxiao Zhang and
Zhiyan Liu
PLOS ONE, 2026, vol. 21, issue 1, 1-28
Abstract:
AR/VR and other immersive technologies are creating dynamic, learner-centred, and engaging language-learning environments. In these ever-changing situations, judging someone’s language abilities is difficult. Managing multimodal learner inputs, understanding model predictions, and protecting user data across distributed systems are some of the most prominent challenges. This paper proposes TriNet-AQ, a federated, interpretable deep learning architecture for classifying English competency in AR/VR platforms. This technique addresses the difficulties raised. This work employs Quantum Sinusoidal Encoding (QSE), Triaxial Attention Fusion (TAF) for multimodal feature alignment, and Quantum Modulated Integration (QMI) to enhance context-aware learning by optimizing temporal representation. Hybrid Slime Gorilla Optimisation (HSGO) aids optimization. It accelerates convergence and improves performance and economy. TriNet-AQ provides decentralized training to many clients via federated learning, enhancing privacy and flexibility. TriNet-AQ outperforms classical, fuzzy, and hybrid baselines in real-world augmented and virtual reality instructional datasets. Its accuracy is 98.5%, AUC is 0.95, and EPES is 0.89. Even when it loses 3.5% accuracy on new data, it can generalize effectively. Another SHAP-based interpretability finding is the presence of obvious feature attributions and consistent relevance across users. Statistical analysis, including Cohen’s d = 0.89 (p
Date: 2026
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329304 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29304&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0329304
DOI: 10.1371/journal.pone.0329304
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().