EconPapers    
Economics at your fingertips  
 

Kinship verification via correlation calculation-based multi-task learning

Xiaoqian Qin, Dakun Liu and Bin Gui

PLOS ONE, 2025, vol. 20, issue 9, 1-21

Abstract: Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs. To address these challenges, this paper proposes a novel correlation calculation-based multi-task learning (CCMTL) method specifically designed for kinship verification. It has been observed that kin members often exhibit a high degree of similarity in key facial organs, such as eyes, mouths, and noses. Given this similarity, similar facial features between kin members with different kin relationships frequently demonstrate certain correlations. Inspired by this observation, our proposed method aims to learn a set of metrics by leveraging both the specified kinship data and the correlations among various kinship types. These correlations are determined through an in-depth investigation of the spatial distribution relationship between the specified kinship data and other kinship types. Furthermore, we develop an efficient algorithm within the multi-task learning framework that integrates correlation exploitation with metric learning. This innovative approach effectively resolves the issue of information isolation while minimizing computational overhead. Extensive experimental validation conducted on the KinFaceW dataset demonstrates that the proposed CCMTL method achieves superior or comparable results to those of existing methods.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329574 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29574&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0329574

DOI: 10.1371/journal.pone.0329574

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-09-27
Handle: RePEc:plo:pone00:0329574