EconPapers    
Economics at your fingertips  
 

Wear state identification of reciprocating sliding friction Pairs with frictional vibration

Haijie Yu and Haijun Wei

PLOS ONE, 2025, vol. 20, issue 8, 1-17

Abstract: Real-time monitoring of the wear state of reciprocating sliding friction pairs has long been a challenging issue. To address this problem, this paper innovatively proposes a new method of constructing feature vectors based on the fractal parameters of frictional vibration signals and employing a nonlinear support vector machine to identify different wear states. Three typical wear states, namely running-in wear, normal wear, and severe wear, were designed by adjusting the amount of lubricating oil and distinguished by variations in the friction coefficient. Unlike conventional time-frequency or statistical features, our approach uniquely employs multifractal spectrum parameters to characterize wear states. The research results demonstrate that this method achieves recognition accuracies exceeding 90% for all three wear states in 10-fold cross-validation, indicating the effectiveness of the nonlinear support vector machine in realizing the recognition of different wear states of reciprocating sliding friction pairs. This achievement not only provides a new technical approach for online monitoring of wear states but also offers a valuable reference for the application of nonlinear signal analysis in other fields.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329782 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29782&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0329782

DOI: 10.1371/journal.pone.0329782

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-08-16
Handle: RePEc:plo:pone00:0329782