EconPapers    
Economics at your fingertips  
 

Solving multi-scenario hybrid flow shop scheduling problem based on an improved probe machine model

Xiang Tian, Yang Kong and Xiyu Liu

PLOS ONE, 2025, vol. 20, issue 9, 1-39

Abstract: The hybrid flow-shop scheduling problem is widely present and applied in industries such as production, manufacturing, transportation, and aerospace. In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. Next, a CP model (IPMMPO-CP) applicable to multi-scenario HFS problems is proposed. Finally, based on a large number of instances and real cases, IPMMPO-CP is compared with 9 representative algorithms and 2 latest CP models. The results demonstrate that the proposed IPMMPO-CP outperforms the compared algorithms and models.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330020 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30020&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0330020

DOI: 10.1371/journal.pone.0330020

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-09-27
Handle: RePEc:plo:pone00:0330020