EconPapers    
Economics at your fingertips  
 

Detecting infrared UAVs on edge devices through lightweight instance segmentation

YuZhi Chen, HaoYue Sun, Liang Tian, Ye Yang, ShenYang Wang and TianYou Wang

PLOS ONE, 2025, vol. 20, issue 8, 1-31

Abstract: Motivation: Infrared unmanned aerial vehicle (UAV) detection for surveillance applications faces three conflicting requirements: accurate detection of pixel-level thermal signatures, real-time processing capabilities, and deployment feasibility on resource-constrained edge devices. Current deep learning approaches typically optimize for one or two of these objectives while compromising the third. Method: This paper presents YOLO11-AU-IR, a lightweight instance segmentation framework that addresses these challenges through three architectural innovations. First, Efficient Adaptive Downsampling (EADown) employs dual-branch processing with grouped convolutions to preserve small-target spatial features during multi-scale fusion. Second, HeteroScale Attention Network (HSAN) implements grouped multi-scale convolutions with joint channel-spatial attention mechanisms for enhanced cross-scale feature representation. These architectural optimizations collectively reduce computational requirements while maintaining detection accuracy. Third, Adaptive Threshold Focal Loss (ATFL) introduces epoch-adaptive parameter tuning to address the extreme foreground-background imbalance inherent in infrared UAV imagery. Results: YOLO11-AU-IR is evaluated on the AUVD-Seg300 dataset, achieving 97.7% mAP@0.50 and 75.2% mAP@0.50:0.95, surpassing the YOLO11n-seg baseline by 1.7% and 4.4%, respectively. The model reduces parameters by 24.5% and GFLOPs by 11.8% compared to YOLO11n-seg, while maintaining real-time inference at 59.8 FPS on an NVIDIA RTX 3090 with low variance. On the NVIDIA Jetson TX2, under INT8 CPU-only deployment, YOLO11-AU-IR retains 95% mAP@0.50 with minimal memory footprint and stable performance, demonstrating its practical edge compatibility. Ablation studies further confirm the complementary contributions of EADown, HSAN, and ATFL in enhancing accuracy, robustness, and efficiency. Code and dataset are publicly available at https://github.com/chen-yuzhi/YOLO11-AU-IR.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330074 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30074&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0330074

DOI: 10.1371/journal.pone.0330074

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-08-23
Handle: RePEc:plo:pone00:0330074