Multi-task meta-initialized DQN for fast adaptation to unseen slicing tasks in O-RAN
Bosen Zeng and
Xianhua Niu
PLOS ONE, 2025, vol. 20, issue 10, 1-15
Abstract:
The open radio access network (O-RAN) architecture facilitates intelligent radio resource management via RAN intelligent controllers (RICs). Deep reinforcement learning (DRL) algorithms are integrated into RICs to address dynamic O-RAN slicing challenges. However, DRL-based O-RAN slicing suffers from instability and performance degradation when deployed on unseen tasks. We propose M2DQN, a hybrid framework that combines multi-task learning (MTL) and meta-learning to optimize DQN initialization parameters for rapid adaptation. Our method decouples the DQN into two components: shared layers trained via MTL to capture cross-task representations, and task-specific layers optimized through meta-learning for efficient fine-tuning. Experiments in an open-source network slicing environment demonstrate that M2DQN outperforms MTL, meta-learning, and policy reuse baselines, achieving improved initial performance across 91 unseen tasks. This demonstrates an effective balance between transferability and adaptability. Code is available at: https://github.com/bszeng/M2DQN.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330226 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30226&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0330226
DOI: 10.1371/journal.pone.0330226
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().