Predicting in-hospital mortality in ICU patients with Coronary heart disease and diabetes mellitus using machine learning models
Guang Tu,
Zhonglan Cai,
Ling Wu,
Hang Yu,
Hongke Jiang and
Haijian Luo
PLOS ONE, 2025, vol. 20, issue 8, 1-16
Abstract:
Background: Coronary heart disease (CHD) and diabetes mellitus are highly prevalent in intensive care units (ICUs) and significantly contribute to high in-hospital mortality rates. Traditional risk stratification models often fail to capture the complex interactions among clinical variables, limiting their ability to accurately identify high-risk patients. Machine learning (ML) models, with their capacity to analyze large datasets and identify intricate patterns, provide a promising alternative for improving mortality prediction accuracy. Objective: This study aims to develop and validate machine learning models for predicting in-hospital mortality in ICU patients with CHD and diabetes, and enhance model interpretability using SHapley Additive exPlanation (SHAP) values, thereby providing a more accurate and practical tool for clinicians. Methods: We conducted a retrospective cohort study using data from the MIMIC-IV database, focusing on adult ICU patients with a primary diagnosis of CHD and diabetes. We extracted baseline characteristics, laboratory parameters, and clinical outcomes. The Boruta algorithm was employed for feature selection to identify variables significantly associated with in-hospital mortality, and 16 machine learning models, including logistic regression, random forest, gradient boosting, and neural networks, were developed and compared using receiver operating characteristic (ROC) curves and area under the curve (AUC) analysis. SHAP values were used to explain variable importance and enhance model interpretability. Results: Our study included 2,213 patients, of whom 345 (15.6%) experienced in-hospital mortality. The Boruta algorithm identified 29 significant risk factors, and the top 13 variables were used for developing machine learning models. The gradient boosting classifier achieved the highest AUC of 0.8532, outperforming other models. SHAP analysis highlighted age, blood urea nitrogen, and pH as the most important predictors of mortality. SHAP waterfall plots provided detailed individualized risk assessments, demonstrating the model’s ability to identify high-risk subgroups effectively. Conclusions: Machine learning models, especially the gradient boosting classifier, demonstrated superior performance in predicting in-hospital mortality in ICU patients with CHD and diabetes, outperforming traditional statistical methods. These models provide valuable insights for risk stratification and have the potential to improve clinical outcomes. Future work should focus on external validation and clinical implementation to further enhance their applicability and effectiveness in managing this high-risk population.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330381 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30381&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0330381
DOI: 10.1371/journal.pone.0330381
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().