EconPapers    
Economics at your fingertips  
 

A new design of wind power prediction method based on multi-interaction optimization informer model

Wenjuan Zhou, Feng Huang, Bing Wei, Liang Li, Shixi Dai, Xin Xie, Youyuan Peng and Hong You

PLOS ONE, 2025, vol. 20, issue 8, 1-23

Abstract: The accurate prediction of wind power is imperative for maintaining grid stability. In order to address the limitations of traditional neural network algorithms, the Informer model is employed for wind power prediction, delivering higher accuracy. However, due to insufficient exploration of dynamic coupling among multi-source features and inadequate data health status perception, both prediction accuracy and computational efficiency deteriorate under complex working conditions.This study proposes a prediction framework for the Informer model based on multi-source feature interaction optimization (MFIO-Informer). Integrating physical feature collaborative analysis with data health status perception has been shown to enhance prediction accuracy and reduce computation time. First, the Lasso algorithm and Pearson correlation coefficient method are applied to screen key multi-source features from wind turbine operation and maintenance data, quantifying their dynamic correlations with power output. Secondly, a fully-connected neural network (FNN) is employed to establish a hidden coupling model of wind speed, blade deflection angle, and power for extracting the Dynamic Synergistic Coefficient (DSC), which characterizes equipment performance. Subsequently, a health assessment of wind turbine data is conducted, leveraging historical power data and DSC. This assessment yields a health matrix, which is instrumental in optimizing the encoding, decoding, and embedding vector prediction processes of the Informer model. Finally, power prediction experiments are conducted on two public wind power datasets using the proposed MFIO-Informer model.The experimental results demonstrate that, in comparison with the traditional Informer model, the MFIO-Informer model attains approximately 20% higher prediction accuracy and 54.85% faster prediction speed.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330464 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30464&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0330464

DOI: 10.1371/journal.pone.0330464

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-09-27
Handle: RePEc:plo:pone00:0330464