A cost effective machine learning based network intrusion detection system using Raspberry Pi for real time analysis
Wijethilaka Rwks,
Kanishka Yapa and
Deemantha Siriwardena
PLOS ONE, 2025, vol. 20, issue 12, 1-18
Abstract:
In an increasingly interconnected world, the security of sensitive data and critical operations is paramount. This study presents the development of a Network Intrusion Detection System (NIDS) that analyzes both inbound and outbound network traffic to detect and classify various cyber attacks. The research begins with an extensive review of existing intrusion detection techniques, highlighting the limitations of traditional methods when addressing the unique security challenges posed by distributed networks. To overcome these limitations, advanced machine learning algorithms, including Random Forest, Long Short Term Memory (LSTM) networks, Artificial Neural Networks (ANN), XGBoost, and Naive Bayes, are employed to create a robust and adaptive intrusion detection system. The practical implementation utilizes a Raspberry Pi as the central processing unit for real time traffic analysis, supported by hardware components such as Ethernet cables, LEDs, and buzzers for continuous monitoring and immediate threat response. A comprehensive alert system is developed, sending email notifications to administrators and activating physical indicators to signify detected threats. Our proposed NIDS achieves 96.5 detection accuracy on the NF-UQ-NIDS dataset, with a significantly reduced false positive rate after applying SMOTE. The system processes real time network traffic with an average response time of 50 milliseconds, outperforming traditional IDS solutions in accuracy and efficiency. Evaluation using the NF-UQ-NIDS dataset demonstrates a significant improvement in detection accuracy and response time, establishing the system as an effective tool for safeguarding networks against emerging cyber threats.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0331123 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31123&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0331123
DOI: 10.1371/journal.pone.0331123
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().