EconPapers    
Economics at your fingertips  
 

Using eDNA tools to examine the impact of kelp farming on underlying sediments

Samuel H Tan, Emmaeve Jourdain, Shane P Farrell, Nichole N Price, Jeremy J Rich and David Emerson

PLOS ONE, 2025, vol. 20, issue 9, 1-25

Abstract: Using environmental DNA (eDNA)-based tools, we examined sediments underlying a ~ 1.25 hectare commercial kelp farm in the Gulf of Maine growing sugar kelp (Saccharina latissima) for two farming seasons, post-harvest. Two eDNA methods were used: a newly designed S. latissima-specific digital polymerase chain reaction (dPCR) assay targeting the cytochrome oxidase subunit I (COI) mitochondrial gene, as well as metabarcoding for the 16S and 18S ribosomal RNA (rRNA) genes, to examine overall bacterial, archaeal, and eukaryotic diversity. Sediment carbon and nitrogen content was analyzed using isotope ratio mass spectrometry (IRMS) as more traditional indicators of potential kelp biomass-derived nutrient enrichment in the benthos. When targeted sampling sites were added inside the footprint of the farm lease area in year two of the study, dPCR data showed subtle but significant differences between sediment samples inside and outside of the farm, with mean S. latissima COI gene copies from cores taken inside the farm being ~8% greater than mean values outside the farm. The highest COI copy numbers in marine sediments were from sites with observed accumulation of kelp biomass, while there was no conclusive difference in carbon and nitrogen content of those same sediment samples. Metabarcoding data also revealed subtle differences in taxa associated with sediments inside and outside the farm. For example, microbial taxa that correlated with kelp eDNA from cores within the farm included the families Rhodothermaceae, Rubritaleaceae, Flavobacteriaceae, Prolixibacteraceae, Nitrosomonadaceae, Nitrincolaceae and Rubinisphaeraceae. However, the majority of the above taxa were low in relative abundance, with only Flavobacteriaceae ranking among the top 30 most abundant and prevalent families in these sediments. In summary, this study demonstrates the sensitivity and specificity of eDNA tools to detect potential ecological and anthropogenic effects in marine sediments, beyond that of bulk nutrient and stable isotope analyses.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0331416 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31416&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0331416

DOI: 10.1371/journal.pone.0331416

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-09-27
Handle: RePEc:plo:pone00:0331416