EconPapers    
Economics at your fingertips  
 

Improving the accuracy of cybersecurity spam email detection using ensemble techniques: A stacking approach Machine learning for spam email detection

Ye Tian, Xin Dai, Zhijun Li, Hong Guo and Xiao Mao

PLOS ONE, 2025, vol. 20, issue 9, 1-25

Abstract: With the widespread adoption of internet technologies and email communication systems, the exponential growth in email usage has precipitated a corresponding surge in spam proliferation. These unsolicited messages not only consume users’ valuable time through information overload but also pose significant cybersecurity threats through malware distribution and phishing schemes, thereby jeopardizing both digital security and user experience. This emerging challenge underscores the critical importance of developing effective spam detection mechanisms as a cornerstone of modern cybersecurity infrastructure. Through empirical analysis of machine learning (ML) performance on publicly available spam datasets, we established that algorithmic ensemble methods consistently outperform individual models in detection accuracy. We propose an optimized stacking ensemble framework that strategically combines predictions from four heterogeneous base models (NBC, k-NN, LR, XGBoost) through meta-learner integration. Our methodology incorporates grid search cross-validation with hyperparameter space optimization, enabling systematic identification of parameter configurations that maximize detection performance. The enhanced model was rigorously evaluated using comprehensive metrics including accuracy (99.79%), precision, recall, and F1-score, demonstrating statistically significant improvements over both baseline models and existing solutions documented in the literature.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0331574 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31574&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0331574

DOI: 10.1371/journal.pone.0331574

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-09-06
Handle: RePEc:plo:pone00:0331574